Product Details
Place of Origin: China
Brand Name: Tankii
Certification: ISO9001
Model Number: K
Payment & Shipping Terms
Minimum Order Quantity: 5~10kg as per diameter
Price: USD26~60/kg
Packaging Details: ON spool and carton package. As the order quantity and customer requirement.
Delivery Time: 5-7 days
Payment Terms: T/T, Paypal, Western Union, MoneyGram,
Supply Ability: 2000 Ton per year
Item: |
0~1250 Degrees Type K Thermocouple Wire Chromel Alumel Bare Wire 0.05~12mm For Aerospace |
Material: |
KP-KN: Chromel- Alumel |
Surface: |
Bright Or Oxidized As Per Request |
Diameter: |
0.05mm-12mm Can Be Produced |
Class: |
1 |
MOQ: |
5~10kg As Per Diameter |
Item: |
0~1250 Degrees Type K Thermocouple Wire Chromel Alumel Bare Wire 0.05~12mm For Aerospace |
Material: |
KP-KN: Chromel- Alumel |
Surface: |
Bright Or Oxidized As Per Request |
Diameter: |
0.05mm-12mm Can Be Produced |
Class: |
1 |
MOQ: |
5~10kg As Per Diameter |
The two wires that make up the thermocouple pair are made from a range of different alloys and metals and have been standardised by both international and national bodies.
Thermocouples are temperature sensors that work based on the principle of the Seebeck effect, discovered by Thomas Johann Seebeck in 1821. The Seebeck effect states that when two different metals are joined at two junctions, and there is a temperature difference between the junctions, an electromotive force (EMF) or voltage is generated across the metal junctions.
What differentiates one thermocouple from another is the metals in its two wires: the positive leg and the negative leg. Because each thermocouple type has a different pairing, they differ in temperature limits, process conditions (inert, oxidizing, reducing atmospheres, heavy vibration), and so on.
Conductor Name |
Thermocouple Type |
Grade |
Temperature range ℃ |
Allowable Tolerance /℃ |
PtRh30-PtRh6 | B | Ⅱ | 600~1700 | ±0.25% t |
Ⅲ | 600~800 | ±4 | ||
800~1700 | ±0.5%t | |||
PtRh13-Pt | R | Ⅰ | 0~1100 | ±1 |
1100~1600 | ±[1+(t-1100) ×0.3%] | |||
Ⅱ | 0~600 | ±1.5 | ||
600~1600 | ±0.25% t | |||
PtRh10-Pt | S |
Ⅰ |
0~1100 | ±1 |
1100~1600 | ±[1+(t-1100) ×0.3%] | |||
Ⅱ |
0~600 | ±1.5 | ||
600~1600 | ±0.25% t | |||
NiCr-Ni | K | Ⅰ | -40~1100 | ±1.5℃ or ±0.4%t |
Ⅱ | -40~1300 | ±2.5℃ or ±0.75%t | ||
Ⅲ | -200~40 | ±2.5℃ or ±1.5%t | ||
NiCrSi-NiSi | N | Ⅰ | -40~1100 | ±1.5℃ or ±0.4%t |
Ⅱ | -40~1300 | ±2.5℃ or ±0.75%t | ||
Ⅲ | -200~40 | ±2.5℃ or ±1.5%t | ||
NiCr-CuNi (Constantan) | E | Ⅰ | -40~1100 | ±1.5℃ or ±0.4%t |
Ⅱ | -40~1300 | ±2.5℃ or ±0.75%t | ||
Ⅲ | -200~40 | ±2.5℃ or ±1.5%t | ||
Fe-CuNi (Constantan) | J | Ⅰ | -40~750 | ±1.5℃ or ±0.4%t |
Ⅱ | -40~750 | ±2.5℃ or ±0.75%t | ||
Cu-CuNi (Constantan) | T | Ⅰ | -40~350 | ±0.5℃ or ±0.4%t |
Ⅱ | -40~350 | ±1.0℃ or ±0.75%t | ||
Ⅲ | -200~40 | ±1.0℃ or ±1.5%t |